Module dropkick.scorer

Modified version of sklearn.metrics.scorer to allow for scoring the entire lambda path of a glmnet model.

  • lambda parameter added to the scorers
  • scorers return an array of scores, [n_lambda,]

Authors: Andreas Mueller amueller@ais.uni-bonn.de, Lars Buitinck L.J.Buitinck@uva.nl, Arnaud Joly arnaud.v.joly@gmail.com

License: Simplified BSD

Expand source code
"""
Modified version of `sklearn.metrics.scorer` to allow for scoring the entire lambda 
path of a `glmnet` model.

- lambda parameter added to the scorers
- scorers return an array of scores, [n_lambda,]

Authors: Andreas Mueller <amueller@ais.uni-bonn.de>, 
Lars Buitinck <L.J.Buitinck@uva.nl>, 
Arnaud Joly <arnaud.v.joly@gmail.com>

License: Simplified BSD
"""
import numpy as np
import six
from abc import ABCMeta, abstractmethod
from functools import partial
from sklearn.metrics import (
    r2_score,
    median_absolute_error,
    mean_absolute_error,
    mean_squared_error,
    accuracy_score,
    f1_score,
    roc_auc_score,
    average_precision_score,
    precision_score,
    recall_score,
    log_loss,
)
from sklearn.utils.multiclass import type_of_target


class _BaseScorer(six.with_metaclass(ABCMeta, object)):
    def __init__(self, score_func, sign, kwargs):
        self._kwargs = kwargs
        self._score_func = score_func
        self._sign = sign

    @abstractmethod
    def __call__(self, estimator, X, y, sample_weight=None):
        pass

    def __repr__(self):
        kwargs_string = "".join(
            [", %s=%s" % (str(k), str(v)) for k, v in self._kwargs.items()]
        )
        return "make_scorer(%s%s%s%s)" % (
            self._score_func.__name__,
            "" if self._sign > 0 else ", greater_is_better=False",
            self._factory_args(),
            kwargs_string,
        )

    def _factory_args(self):
        """Return non-default make_scorer arguments for repr."""
        return ""


class _PredictScorer(_BaseScorer):
    def __call__(self, estimator, X, y_true, sample_weight=None, lamb=None):
        """
        Evaluate predicted target values for X relative to y_true and one or
        more values for lambda.

        Parameters
        ----------
        estimator : object
            Trained estimator to use for scoring. Must have a predict_proba
            method; the output of that is used to compute the score.

        X : array-like or sparse matrix
            Test data that will be fed to estimator.predict.

        y_true : array-like
            Gold standard target values for X.

        sample_weight : array-like, optional (default=None)
            Sample weights.

        lamb : array, shape (n_lambda,)
            Values of lambda from lambda_path_ from which to score predictions.

        Returns
        -------
        score : array, shape (n_lambda,)
            Score function applied to prediction of estimator on X.
        """
        y_pred = estimator.predict(X, lamb=lamb)
        if sample_weight is not None:
            scores = np.apply_along_axis(
                lambda y_hat: self._score_func(
                    y_true, y_hat, sample_weight=sample_weight, **self._kwargs
                ),
                0,
                y_pred,
            )
        else:
            scores = np.apply_along_axis(
                lambda y_hat: self._score_func(y_true, y_hat, **self._kwargs), 0, y_pred
            )
        return self._sign * scores


class _ProbaScorer(_BaseScorer):
    def __call__(self, clf, X, y_true, sample_weight=None, lamb=None):
        """
        Evaluate predicted probabilities for X relative to y_true.

        Parameters
        ----------
        clf : object
            Trained classifier to use for scoring. Must have a predict_proba
            method; the output of that is used to compute the score.

        X : array-like or sparse matrix
            Test data that will be fed to clf.predict_proba.

        y_true : array-like
            Gold standard target values for X. These must be class labels,
            not probabilities.

        sample_weight : array-like, optional (default=None)
            Sample weights.

        lamb : array, shape (n_lambda,)
            Values of lambda from lambda_path_ from which to score predictions.

        Returns
        -------
        score : array, shape (n_lambda,)
            Score function applied to prediction of estimator on X.
        """
        y_pred = clf.predict_proba(
            X, lamb=lamb
        )  # y_pred shape (n_samples, n_classes, n_lambda)

        if sample_weight is not None:
            score_func = lambda y_hat: self._score_func(
                y_true, y_hat, sample_weight=sample_weight, **self._kwargs
            )
        else:
            score_func = lambda y_hat: self._score_func(y_true, y_hat, **self._kwargs)

        scores = np.zeros(y_pred.shape[-1])
        for i in range(len(scores)):
            scores[i] = score_func(y_pred[..., i])

        return self._sign * scores

    def _factory_args(self):
        return ", needs_proba=True"


class _ThresholdScorer(_BaseScorer):
    def __call__(self, clf, X, y_true, sample_weight=None, lamb=None):
        """
        Evaluate decision function output for X relative to y_true.

        Parameters
        ----------
        clf : object
            Trained classifier to use for scoring. Must have either a
            decision_function method or a predict_proba method; the output of
            that is used to compute the score.

        X : array-like or sparse matrix
            Test data that will be fed to clf.decision_function or
            clf.predict_proba.

        y_true : array-like
            Gold standard target values for X. These must be class labels,
            not decision function values.

        sample_weight : array-like, optional (default=None)
            Sample weights.

        lamb : array, shape (n_lambda,)
            Values of lambda from lambda_path_ from which to score predictions.

        Returns
        -------
        score : array, shape (n_lambda,)
            Score function applied to prediction of estimator on X.
        """
        y_type = type_of_target(y_true)
        if y_type not in ("binary", "multilabel-indicator"):
            raise ValueError("{0} format is not supported".format(y_type))

        y_pred = clf.decision_function(X, lamb=lamb)
        if sample_weight is not None:
            scores = np.apply_along_axis(
                lambda y_hat: self._score_func(
                    y_true, y_hat, sample_weight=sample_weight, **self._kwargs
                ),
                0,
                y_pred,
            )
        else:
            scores = np.apply_along_axis(
                lambda y_hat: self._score_func(y_true, y_hat, **self._kwargs), 0, y_pred
            )
        return self._sign * scores

    def _factory_args(self):
        return ", needs_threshold=True"


def get_scorer(scoring):
    if isinstance(scoring, six.string_types):
        try:
            scorer = SCORERS[scoring]
        except KeyError:
            raise ValueError(
                "%r is not a valid scoring value. "
                "Valid options are %s" % (scoring, sorted(SCORERS.keys()))
            )
    else:
        scorer = scoring
    return scorer


def _passthrough_scorer(estimator, *args, **kwargs):
    """Function that wraps estimator.score"""
    return estimator.score(*args, **kwargs)


def check_scoring(estimator, scoring=None, allow_none=False):
    """
    Determine scorer from user options.
    A TypeError will be thrown if the estimator cannot be scored.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    allow_none : boolean, optional, default: False
        If no scoring is specified and the estimator has no score function, we
        can either return None or raise an exception.

    Returns
    -------
    scoring : callable
        A scorer callable object / function with signature
        ``scorer(estimator, X, y)``.
    """
    has_scoring = scoring is not None
    if not hasattr(estimator, "fit"):
        raise TypeError(
            "estimator should a be an estimator implementing "
            "'fit' method, %r was passed" % estimator
        )
    elif has_scoring:
        return get_scorer(scoring)
    elif hasattr(estimator, "score"):
        return _passthrough_scorer
    elif allow_none:
        return None
    else:
        raise TypeError(
            "If no scoring is specified, the estimator passed should "
            "have a 'score' method. The estimator %r does not." % estimator
        )


def make_scorer(
    score_func,
    greater_is_better=True,
    needs_proba=False,
    needs_threshold=False,
    **kwargs
):
    """
    Make a scorer from a performance metric or loss function.
    This factory function wraps scoring functions for use in GridSearchCV
    and cross_val_score. It takes a score function, such as ``accuracy_score``,
    ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision``
    and returns a callable that scores an estimator's output.
    Read more in the :ref:`User Guide <scoring>`.

    Parameters
    ----------
    score_func : callable,
        Score function (or loss function) with signature
        ``score_func(y, y_pred, **kwargs)``.

    greater_is_better : boolean, default=True
        Whether score_func is a score function (default), meaning high is good,
        or a loss function, meaning low is good. In the latter case, the
        scorer object will sign-flip the outcome of the score_func.

    needs_proba : boolean, default=False
        Whether score_func requires predict_proba to get probability estimates
        out of a classifier.

    needs_threshold : boolean, default=False
        Whether score_func takes a continuous decision certainty.
        This only works for binary classification using estimators that
        have either a decision_function or predict_proba method.

        For example ``average_precision`` or the area under the roc curve
        can not be computed using discrete predictions alone.

    **kwargs : additional arguments
        Additional parameters to be passed to score_func.

    Returns
    -------
    scorer : callable
        Callable object that returns a scalar score; greater is better.

    Examples
    --------
    >>> from sklearn.metrics import fbeta_score, make_scorer
    >>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
    >>> ftwo_scorer
    make_scorer(fbeta_score, beta=2)
    >>> from sklearn.grid_search import GridSearchCV
    >>> from sklearn.svm import LinearSVC
    >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]},
    ...                     scoring=ftwo_scorer)
    """
    sign = 1 if greater_is_better else -1
    if needs_proba and needs_threshold:
        raise ValueError(
            "Set either needs_proba or needs_threshold to True," " but not both."
        )
    if needs_proba:
        cls = _ProbaScorer
    elif needs_threshold:
        cls = _ThresholdScorer
    else:
        cls = _PredictScorer
    return cls(score_func, sign, kwargs)


# Standard regression scores
r2_scorer = make_scorer(r2_score)
mean_squared_error_scorer = make_scorer(mean_squared_error, greater_is_better=False)
mean_absolute_error_scorer = make_scorer(mean_absolute_error, greater_is_better=False)
median_absolute_error_scorer = make_scorer(
    median_absolute_error, greater_is_better=False
)

# Standard Classification Scores
accuracy_scorer = make_scorer(accuracy_score)
f1_scorer = make_scorer(f1_score)

# Score functions that need decision values
roc_auc_scorer = make_scorer(
    roc_auc_score, greater_is_better=True, needs_threshold=True
)
average_precision_scorer = make_scorer(average_precision_score, needs_threshold=True)
precision_scorer = make_scorer(precision_score)
recall_scorer = make_scorer(recall_score)

# Score function for probabilistic classification
log_loss_scorer = make_scorer(log_loss, greater_is_better=False, needs_proba=True)

SCORERS = dict(
    r2=r2_scorer,
    median_absolute_error=median_absolute_error_scorer,
    mean_absolute_error=mean_absolute_error_scorer,
    mean_squared_error=mean_squared_error_scorer,
    accuracy=accuracy_scorer,
    roc_auc=roc_auc_scorer,
    average_precision=average_precision_scorer,
    log_loss=log_loss_scorer,
)

for name, metric in [
    ("precision", precision_score),
    ("recall", recall_score),
    ("f1", f1_score),
]:
    SCORERS[name] = make_scorer(metric)
    for average in ["macro", "micro", "samples", "weighted"]:
        qualified_name = "{0}_{1}".format(name, average)
        SCORERS[qualified_name] = make_scorer(
            partial(metric, pos_label=None, average=average)
        )

Functions

def check_scoring(estimator, scoring=None, allow_none=False)

Determine scorer from user options. A TypeError will be thrown if the estimator cannot be scored.

Parameters

estimator : estimator object implementing 'fit'
The object to use to fit the data.
scoring : string, callable or None, optional, default: None
A string (see model evaluation documentation) or a scorer callable object / function with signature scorer(estimator, X, y).
allow_none : boolean, optional, default: False
If no scoring is specified and the estimator has no score function, we can either return None or raise an exception.

Returns

scoring : callable
A scorer callable object / function with signature scorer(estimator, X, y).
Expand source code
def check_scoring(estimator, scoring=None, allow_none=False):
    """
    Determine scorer from user options.
    A TypeError will be thrown if the estimator cannot be scored.

    Parameters
    ----------
    estimator : estimator object implementing 'fit'
        The object to use to fit the data.

    scoring : string, callable or None, optional, default: None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    allow_none : boolean, optional, default: False
        If no scoring is specified and the estimator has no score function, we
        can either return None or raise an exception.

    Returns
    -------
    scoring : callable
        A scorer callable object / function with signature
        ``scorer(estimator, X, y)``.
    """
    has_scoring = scoring is not None
    if not hasattr(estimator, "fit"):
        raise TypeError(
            "estimator should a be an estimator implementing "
            "'fit' method, %r was passed" % estimator
        )
    elif has_scoring:
        return get_scorer(scoring)
    elif hasattr(estimator, "score"):
        return _passthrough_scorer
    elif allow_none:
        return None
    else:
        raise TypeError(
            "If no scoring is specified, the estimator passed should "
            "have a 'score' method. The estimator %r does not." % estimator
        )
def get_scorer(scoring)
Expand source code
def get_scorer(scoring):
    if isinstance(scoring, six.string_types):
        try:
            scorer = SCORERS[scoring]
        except KeyError:
            raise ValueError(
                "%r is not a valid scoring value. "
                "Valid options are %s" % (scoring, sorted(SCORERS.keys()))
            )
    else:
        scorer = scoring
    return scorer
def make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs)

Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes a score function, such as accuracy_score, mean_squared_error, adjusted_rand_index or average_precision and returns a callable that scores an estimator's output. Read more in the :ref:User Guide <scoring>.

Parameters

score_func : callable,
Score function (or loss function) with signature score_func(y, y_pred, **kwargs).
greater_is_better : boolean, default=True
Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func.
needs_proba : boolean, default=False
Whether score_func requires predict_proba to get probability estimates out of a classifier.
needs_threshold : boolean, default=False

Whether score_func takes a continuous decision certainty. This only works for binary classification using estimators that have either a decision_function or predict_proba method.

For example average_precision or the area under the roc curve can not be computed using discrete predictions alone.

**kwargs : additional arguments
Additional parameters to be passed to score_func.

Returns

scorer : callable
Callable object that returns a scalar score; greater is better.

Examples

>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> ftwo_scorer
make_scorer(fbeta_score, beta=2)
>>> from sklearn.grid_search import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]},
...                     scoring=ftwo_scorer)
Expand source code
def make_scorer(
    score_func,
    greater_is_better=True,
    needs_proba=False,
    needs_threshold=False,
    **kwargs
):
    """
    Make a scorer from a performance metric or loss function.
    This factory function wraps scoring functions for use in GridSearchCV
    and cross_val_score. It takes a score function, such as ``accuracy_score``,
    ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision``
    and returns a callable that scores an estimator's output.
    Read more in the :ref:`User Guide <scoring>`.

    Parameters
    ----------
    score_func : callable,
        Score function (or loss function) with signature
        ``score_func(y, y_pred, **kwargs)``.

    greater_is_better : boolean, default=True
        Whether score_func is a score function (default), meaning high is good,
        or a loss function, meaning low is good. In the latter case, the
        scorer object will sign-flip the outcome of the score_func.

    needs_proba : boolean, default=False
        Whether score_func requires predict_proba to get probability estimates
        out of a classifier.

    needs_threshold : boolean, default=False
        Whether score_func takes a continuous decision certainty.
        This only works for binary classification using estimators that
        have either a decision_function or predict_proba method.

        For example ``average_precision`` or the area under the roc curve
        can not be computed using discrete predictions alone.

    **kwargs : additional arguments
        Additional parameters to be passed to score_func.

    Returns
    -------
    scorer : callable
        Callable object that returns a scalar score; greater is better.

    Examples
    --------
    >>> from sklearn.metrics import fbeta_score, make_scorer
    >>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
    >>> ftwo_scorer
    make_scorer(fbeta_score, beta=2)
    >>> from sklearn.grid_search import GridSearchCV
    >>> from sklearn.svm import LinearSVC
    >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]},
    ...                     scoring=ftwo_scorer)
    """
    sign = 1 if greater_is_better else -1
    if needs_proba and needs_threshold:
        raise ValueError(
            "Set either needs_proba or needs_threshold to True," " but not both."
        )
    if needs_proba:
        cls = _ProbaScorer
    elif needs_threshold:
        cls = _ThresholdScorer
    else:
        cls = _PredictScorer
    return cls(score_func, sign, kwargs)